Hypothesis Testing Information Table

	Parameter	Statistic	Type of Test Statistic	Test Statistic Calculation	Degrees of Freedom (df)
One Proportion	p	\hat{p}	z	$z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}$	N/A
Difference between proportions	$p_{1}-p_{2}$	$\hat{p}_{1}-\hat{p}_{2}$	z	$z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}$	N/A
One mean	μ	$\bar{\chi}$	z or t, depends on whether you know σ, or is n is large	$z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \text { or } t=\frac{\bar{x}-\mu_{0}}{S / \sqrt{n}}$	If using $\mathrm{t}, \mathrm{df}=\mathrm{n}-1$
Difference between means (unpooled)	$\mu_{1}-\mu_{2}$	$\bar{x}_{1}-\bar{x}_{2}$	t	$t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$	$\min \left(n_{1}-1, n_{2}-1\right)$
Paired difference (mean difference)	μ_{D}	\bar{d}	t	$t=\frac{\bar{d}}{s_{d} / \sqrt{n}}$	$n-1$

For rejection criteria, see "Hypothesis Testing Rejection Criteria" handout on the class website.

